4,797 research outputs found

    Assembly Bias and Splashback in Galaxy Clusters

    Full text link
    We use publicly available data for the Millennium Simulation to explore the implications of the recent detection of assembly bias and splashback signatures in a large sample of galaxy clusters. These were identified in the SDSS/DR8 photometric data by the redMaPPer algorithm and split into high- and low-concentration subsamples based on the projected positions of cluster members. We use simplified versions of these procedures to build cluster samples of similar size from the simulation data. These match the observed samples quite well and show similar assembly bias and splashback signals. Previous theoretical work has found the logarithmic slope of halo density profiles to have a well-defined minimum whose depth decreases and whose radius increases with halo concentration. Projected profiles for the observed and simulated cluster samples show trends with concentration which are opposite to these predictions. In addition, for high-concentration clusters the minimum slope occurs at significantly smaller radius than predicted. We show that these discrepancies all reflect confusion between splashback features and features imposed on the profiles by the cluster identification and concentration estimation procedures. The strong apparent assembly bias is not reflected in the three-dimensional distribution of matter around clusters. Rather it is a consequence of the preferential contamination of low-concentration clusters by foreground or background groups.Comment: 17 pages, 16 figures, 3 tables, accepted versio

    Diffuse light in z~0.25 galaxy clusters: constraining tidal damage and the faint end of the Luminosity Function

    Full text link
    The starlight coming from the intergalactic space in galaxy clusters and groups witnesses the violent tidal interactions that galaxies experience in these dense environments. Such interactions may be (at least partly) responsible for the transformation of normal star-forming galaxies into passive dwarf ellipticals (dEs). In this contribution we present the first systematic study of the IntraCluster Light (ICL) for a statistically representative sample (Zibetti et al. 2005), which comprises 683 clusters selected between z=0.2 and 0.3 from ~1500 deg^2 in the SDSS. Their ICL is studied by stacking the images in the g-, r-, and i-band after masking out all galaxies and polluting sources. In this way a very uniform background illumination is obtained, that allows us to measure surface brightnesses as faint as 31 mag/arcsec^2 and to trace the ICL out to 700 kpc from the central galaxy. We find that the local fraction of light contributed by intracluster stars rapidly decreases as a function of the clustercentric distance, from ~40% at 100 kpc to ~5% at 500 kpc. By comparing the distribution and colours of the ICL and of the clusters galaxies, we find indication that the main source of ICL are the stars stripped from galaxies that plunge deeply into the cluster potential well along radial orbits. Thus, if dEs are the remnants of these stripped progenitors we should expect similar radial orbital anisotropies and correlations between the dE luminosity function and the amount of ICL in different clusters. The diffuse emission we measure is contaminated by faint unresolved galaxies: this makes our flux estimate depend to some extent on the assumed luminosity function, but, on the other hand, allows us to constrain the number of faint galaxies. Our present results disfavour steep (alpha<-1.35) faint-end powerlaw slopes.Comment: 4 pages, 2 figures, use iauc.cls. Oral presentation to appear in the proceedings of "IAU Colloquium 198 - Near-Field Cosmology with Dwarf Elliptical Galaxies", Les Diablerets 14-18 March 2005, B. Binggeli and H. Jerjen ed

    Galaxy growth in the concordance Λ\LambdaCDM cosmology

    Full text link
    We use galaxy and dark halo data from the public database for the Millennium Simulation to study the growth of galaxies in the De Lucia et al. (2006) model for galaxy formation. Previous work has shown this model to reproduce many aspects of the systematic properties and the clustering of real galaxies, both in the nearby universe and at high redshift. It assumes the stellar masses of galaxies to increase through three processes, major mergers, the accretion of smaller satellite systems, and star formation. We show the relative importance of these three modes to be a strong function of stellar mass and of redshift. Galaxy growth through major mergers depends strongly on stellar mass, but only weakly on redshift. Except for massive systems, minor mergers contribute more to galaxy growth than major mergers at all redshifts and at all stellar masses. For galaxies significantly less massive than the Milky Way, star formation dominates the growth at all epochs. For galaxies significantly more massive than the Milky Way, growth through mergers is the dominant process at all epochs. At a stellar mass of 6×1010M⊙6\times 10^{10}M_\odot, star formation dominates at z>1z>1 and mergers at later times. At every stellar mass, the growth rates through star formation increase rapidly with increasing redshift. Specific star formation rates are a decreasing function of stellar mass not only at z=0z=0 but also at all higher redshifts. For comparison, we carry out a similar analysis of the growth of dark matter halos. In contrast to the galaxies, growth rates depend strongly on redshift, but only weakly on mass. They agree qualitatively with analytic predictions for halo growth.Comment: 11 pages, 6 figure

    How Rare is the Bullet Cluster?

    Get PDF
    The galaxy cluster 1E 0657-56 has a bullet-like subcluster that is moving away from the centre of the main cluster at high speed. Markevitch et al. (2004) recently estimated a relative velocity of V_bullet = 4500 +1100/-800 km/s, based on observations of the bow shock in front of the subcluster. The weak lensing analysis of Clowe et al. (2004) indicates that a substantial secondary mass peak is associated with this subcluster. We estimate the likelihood of such a configuration by examining the distribution of subhalo velocities for clusters in the Millennium Run, a large LCDM cosmological simulation. We find that the most massive subhalo has a velocity as high as that of the bullet subcluster in only about 1 out of every 100 cluster-sized halos. This estimate is strongly dependent on the precise velocity adopted for the bullet. One of the ten most massive subhalos has such a high velocity about 40% of the time. We conclude that the velocity of the bullet subcluster is not exceptionally high for a cluster substructure, and can be accommodated within the currently favoured LCDM comogony.Comment: 5 pages, 3 figures, accepted for publication in MNRA
    • …
    corecore